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1. INTRODUCTION

This paper presents a technique for constructing functions meromorphic
in the unit disk with specific preassigned asymptotic behavior at the bound­
ary. The construction technique is of a more geometric nature than the
method used by S. Kierst in constructing a function meromorphic in the unit
disk with any prescribed analytic set as its set of asymptotic values [2]. As a
result, not only can the set of asymptotic values be prescribed as any non­
empty analytic set, but the nature of the asymptotic paths can also be pre­
scribed as point, are, or spiral paths. In the case where the asymptotic paths
terminate at points on the circumference, even the number of asymptotic
values at each point can be restricted to no more than two.

The construction technique, which is the essential part of the proof for
each of the results mentioned above, is presented separately in Sections 3-5
because it is of independent interest with applicability to situations other than
those mentioned here. The particular applications which inspired this
technique are presented in Sections 6 and 7. Although the resulting functions
could easily have been constructed in the entire plane, the unit disk was
chosen because of the precision that could be obtained at each point on the
boundary.

2. DEFINITIONS

Let C and D denote respectively the unit circle {[ z I = I} and the open
unit disk {[ z I < I} in the complex plane. A simple continuous curve
,\ : z(t)(O ::::;; t < 1) contained in D is called a boundary path if I z(t)1 ---+ 1 as
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t ~ I. The end of a boundary path .\ is the intersection of the closure Xof .\
with C. If .\ is a boundary path whose end is a single point z, .\ is called a
boundary path at z or simply a path at z.

Letfbe a function from D into the Riemann sphere Q. If.\ : z(t)(O :::;;; t < 1)
is a boundary path and there exists an a E Q such that limt...d(z(t» = a,
then a is called an asymptotic value offand .\ is called an asymptotic path off
More specifically, a is a point (arc) asymptotic value off if the end of .\ is a
point (arc or all of C).

By a spiral we shall mean a boundary path with the property that arg
z(t)~ +00 as t~ 1. An asymptotic value off obtained along a spiral a is
called a spiral asymptotic value, and a is called a spiral asymptotic path. Let
rpU), rAU), and rsU) denote the sets of all point, are, and spiral asymp­
totic values of f respectively. Let ru) denote the set of all asymptotic
values of f and let F(f, z) be the set of all point asymptotic values on paths
at z.

A function (/J defined from C into Q is called a boundary function for f if
(/J(ei8) E r(f, ei8) for all 0(0 :::;;; 0 < 217). Let (/J(S) = {(/J(z): z E S}. The nota­
tion I F(f, ei8) Iwill be used to denote the cardinality of the set r(f, ei8).

3. THE SKELETON

FIGURE 1

For simplicity we shall describe the construction in the rectangle

Q = {z : 0 :::;;; 9t(z) :::;;; 1,0 :::;;; J(z) :::;;; I/2} with 9t(z) = 0

identified with 9t(z) = I. Let Ln = {z : z E Q, J(z) = 2-n } (n = 1,2,...).
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Let .il ... in (n = 1,2,... ; ik = 0, 1) represent the point a::=l ik2-k, 2-n) on
Ln . The points .il ... in (n = 1, 2,... ; ik = 0, 1) will be called vertices, and
Ln will be called the nth level. Note that Ln contains 2n vertices.

Connect the vertices in the following manner:

(1) Join .il ... in to both .il ... inO and .il ... inl with rectilinear segments
(n = 1,2,... ; ik = 0, 1).

(2) (a) Join .0 to the point (1/2, 0) on the real axis with a curve having
decreasing imaginary part and contained in the interior of the triangle with
vertices .0, .1, and (1/2,0). Join .1 to the point (1,0) on the real axis in a
similar manner (see Fig. 1).

(b) For n > 1, join the point .il ... in- 1°to the point

n-l
(2: ik 2-k + 2-n

, 0)
k=l

on the real axis with a curve having decreasing imaginary part and contained
in the interior of the triangle with vertices .il ... in- 1°, .il ... in-II, and

We shall denote the curves described in (2) as A-curves. When greater
precision is needed, we shall denote the curve originating at .il '" in by
Ai "'i • Thus Ao and Al originate on Lt ; but for n > 1, there are 2n- l A-curves

1 n

originating on L n (see Fig. 1).

(3) For each A-curve originating on Ln , call it An, let

Let dk-(An) be the first vertex on Ln+k which is less than dk(An) (Le., with
respect to the linear ordering on Ln+k), and let dk+(An) be the first vertex on
Ln+k greater than dk (An) (e.g., if An = Ai "'i 0 , then dl-(An) = .il '" in_l Ol

1 n-l

and dl +(An) = .il '" in_llO). Join dk-(An) and dk(An) with a rectilinear seg-
ment and also with a Jordan arc that is between Ln+k - l and Ln +1c and does
not cut any of the lines constructed in (1) and (2). These two arcs together
form a Jordan curve containing both dk-(An) and dk(An). Connect dk (An) and
dk+(An) in a similar manner (see Fig. 1).

This completes the construction of the skeleton which will be denoted by
S*. Let S denote the portion constructed in (1) and (2) only.
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4. SEWING A BOUNDARY FUNCTION ONTO S*

We shall be concerned with constructing a meromorphic function that has
a given function ep as a boundary function. To this end it is sufficient to
assume that if 00 E ep(C) then 00 is not an isolated point in ep(C). If this is not
the case, let A,* = {l/(a - ,): aEep(C)} for 'rjep(C). Suppose/* can be
constructed meromorphic in D with a boundary function ep* such that
ep*(C) = A,*. Then f = (1//*) + , is meromorphic in D and has the
original ep as a boundary function.

We shall further be concerned with boundary functions that have analytic
subsets of Q as their image sets. For this purpose it is sufficient to consider
functions defined on the half-open interval (0, 1] which are continuous on
the left [3, p. 169]. Therefore, let ep be a function defined on (0, I] which is
continuous on the left and takes values in Q. If ep takes on the value 00, we
may assume there is a sequence of points {a'.}:~l C ep(O, 1]) such that
I an I < I an+! I (11 = 1,2,... ) and limn.... '" an = 00. Extend ep to the point °
by defining ep(O) = ep(l).

For each point .il .. , in E S, define

if ep (i i k2-k ) = 00
k~l

otherwise.

Extend g to all of S in the following manner:

(1) g is constant on any segment whose end points have the same image
value;

(2) On any segment whose vertices have the values an and
an+! (n = 1,2,...), let g be a homeomorphism onto a curve joining an to
an+! and contained in the annulus {z : I an I < I z I < I an+! I}·

(3) In all other cases let g be a homeomorphism from the rectilinear
segment joining two vertices to the rectilinear segment joining the images of
the two vertices.

Define g on Ai "'i constantly equal to g(.il ••• in). For each An, define g on
1 n

the Jordan curve containing dk-(An) and dk(An) in the following manner:

(1) if g(dk -(An» = g(dk(An», g is constant on the entire Jordan curve.

(2) if g(dk-(An» # g(dk(A"», g is a homeomorphism from the Jordan
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curve containing dk-(>..n) and dk(?tn) to the circle containing g(dk-(An» and
g(dk(An» and having diameter equal to Ig(dk-(An» - g(dk(An»I .

Define g on the Jordan curve containing dk(An) and dk+(An) in a similar
manner. In this way, g is defined and continuous on all of S*.

5. ASYMPTOTIC PROPERTIES OF g

G,

Ir------ E ------~

FIGURE 2

FlGURE 3
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Each point x E [0, 1] that is not a dyadic rational can be expressed uniquely
as

Uk = 0, I).

Let y(x) denote the boundary path at x that is the union of the line segments
joining the vertices .il ->- .il i2 ->- --- ->- .il •.• in ->- ---. The path y(x) is a
subset of S (see Fig. 2). For x a dyadic rational in [0, 1], let y(x) be the inter­
section ofS with the line 9f(z) = x. Let {3(x) denote the intersection ofS with
the line containing x and having slope --1 (see Fig. 3).

Assume that g is defined on all of Q and has the given values on S*. It
follows from the left continuity of C/J and the manner in which C/J is woven
onto S that y(x) is an asymptotic path of g at x with asymptotic value C/J(x)
for each x E [0, 1]. Similarly, if x is a dyadic rational in [0, I], {3(x) is an
asymptotic path of g at x with asymptotic values C/J(x).

For each x E [0, I] that is not a dyadic rational, there exists an to > Osuch
that N E (x) = {z E Q : I Z - x I < to} is divided into two components GI

and G2 by y(x) (see Fig. 2). Each vertex .il .. , in E y(x) with in = °is the
initial point of both a vertical line and a curved line (A-curve) to the real axis.
The vertical lines form a sequence of crosscuts in GI which converge to x.
The curved lines form a sequence of crosscuts in G2 which converge to x.
Since the vertices on y(x) that have zero as last digit assume values that tend
to C/J(x) as the vertices tend to x, g(z) ->- C/J(x) uniformly on each of the
sequences of crosscuts tending to x. As a result, C/J(x) is a cluster value on
every boundary path at x. In particular, C/J(x) is the only asymptotic value on
paths at x.

If x is a dyadic rational between °and I, each sufficiently small neigh­
borhood of x is divided into three components GI , G2 , and Ga by the
boundary paths {3(x) and y(x) (see Fig. 3). An argument similar to the one
above yields the conclusion that every boundary path at x which is
contained in GI U G2 will have C/J(x) as a cluster value. In particular, C/J(x)
is the only asymptotic value on paths at x if boundary paths in Ga are not
considered.

There is, in fact, a A-curve to x contained in Ga on which g is constant (call
the constant value (};A)' Although this value may not be C/J(x), it will always be
in the set C/J«O, I]) since the value of g at each vertex is in C/J«O, I]). The
definition ofg on the Jordan curves linking Ato the boundary of Galimits any
asymptotic value at x obtained on a path in Ga to be either C/J(x) or (};A •

We conclude that g has at least one asymptotic value at each point x E [0, 1]
(i.e., C/J(x». At dyadic rational points, there is the possibility of at most one
other asymptotic value (i.e., (};A)'
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6. CONSTRUCTING FUNCTIONS WHICH HAVE $ AS A

BOUNDARY FUNCTION

Kierst [2] has constructed an example of a function meromorphic in D
whose set of asymptotic values is any prescribed analytic subset of Q. The
following theorem presents a different construction of such a function. More
control is obtained over the nature of the asymptotic paths and also over the
asymptotic behavior of the function at each point on C.

THEOREM 1. Let A be any nonempty analytic subset of Q. There exists a
functionf(z) meromorphic in D with the following asymptotic behavior:

1. A = rp(f) = r(f);

2. f has a boundary function $ with $(C) = A;

3. For all points eiB E C (0 ~ () < 2rr), 1 ~ [ F(f, ei8)[ ~ 2.

Proof. Let $* be the function defined from (0, 1] onto A which is
continuous on the left [3, p. 169]. By identifying the point 0 with the point 1,
we can map C onto (0, 1] with a homeomorphism h so that $ = $* 0 h
maps C onto A and is continuous in a counterclockwise direction. Let the
circles Cn = {[ Z [ = n/(n + l)} replace the lines L n (n = 1,2,...), and build
the skeleton s* in D making the obvious adjustments.

The function g(z) which is continuous on s* can then be approximated by
a functionf(z) which is meromorphic in D and satisfies

max I f(z) - g(z)1 -+ 0
ZES*

uniformly as I z [ -+ 1 [4]. The conclusions of the theorem have all been
verified in Section 5.

Remark 1. If the circles {I z [ = n} replace the lines L n (n = 1,2,...),
the resulting function is meromorphic in the entire plane.

Remark 2. If I A I = 1, we can use the theorem of Walsh [5, p. 47,
Theorem 15] to prescribe a pole at least in the interior of each of the Jordan
curves in S*. This would guarantee thatf(z) is not constant. In this case, (j>

would be the only boundary function for f.

Remark 3. A consequence of the construction is that I r(J, ei8) [ = 2 is
possible only at the points on C which correspond (i.e., are the images under
h) to dyadic rational points on (0, 1].

The construction of a holomorphic function with $ as a boundary function
is possible if we use S instead of S*. This results in a weakening of the
limitation of r(f) to A.
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THEOREM 2. Let A be any nonempty analytic subset ofQ. There exists a
fUllction/(z) holomorphic in D with the/ollowing asymptotic behavior:

1. A C Tp(f) = T(f);

2. f has a boundary function (/l with (/l(e) = A.

Proof Define S as in the proof of Theorem I. Since we are dealing with
a holomorphic function here we must deal directly with the possibility that
00 is isolated in A. To this end, redefine

if (/l (± ik 2-k ) = 00
k~l

otherwise

(compare with the definition in Section 4).
The remainder of the proof is the same as in Theorem 1 except for the use

of a result of Arakeljan [1, p. 275, Theorem 2] which allows the conclusion
that there exists a functionfholomorphic in D and satisfying

n;"all fez) - g(z)I- 0

uniformly as I z I - 1.

Remark 1. The conclusions of the theorem would be the same if all the
A-curves were excluded from S. The inclusion of these curves assures that
r(f, ei8) = {(/l(ei8)} at every point ei8 which is the image under h of a point
that is not a dyadic rational in (0, 1].

Remark 2. To insure thatfwill not be constant, letg(z) - 00 as I z 1- I
on Ao. Unfortunately, in this case, this does not restrict the number of
boundary functions for f even if I A I = I.

Remark 3. If I r(f, ei8)1 > 1, then ei8 is the image (with respect to h) of
a dyadic rational in (0, 1]. If (/l(ei8) and the (XA at this point are finite and
distinct, 00 will also be an asymptotic value at ei8• Thus I r(f, ei8

)/ ;? 3.

7. OTHER ApPLICATIONS

For f meromorphic in D, Kierst [2] has characterized r(f) as an analytic
subset of Q. The function constructed by Kierst for any analytic set con­
taining more than one value is a normal function. It follows from this that
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r(f) = rp(f). In [4] the author has constructed an example of a function
meromorphic in D whose set of asymptotic values is any preassigned Fu

subset of Q and satisfying Fu = rif) = r(f). The following theorem
generalizes that result and characterizes rif) as any analytic subset of Q.

THEOREM 3. Let A be any nonempty analytic subset of Q. There exists a
functionf(z) meromorphic in D with A = r,,(f) = r(j).

Proof Define the vertices on the circles Cn(n = 1,2,...) as in the proof
of Theorem 1. Rather than joining the points on Cn to those on Cn+l as
before, use arcs whose arguments increase by at least 271" radians. The defini­
tion of g and the approximation by rational functions proceeds just as in
Theorem 1. The new skeleton, however, contains only spirals as boundary
paths and the conclusion follows.

THEOREM 4. Let A be any nonempty analytic subset ofQ, and let 8 satisfy
o :(; 8 :(; 271". There exists a function fB meromorphic in D with the following
asymptotic behavior:

1. A = rAUB) = nfB)

2. For each a E A there exists a boundary path An which is an asympto­
tis path for the value a and whose end is an arc of length 8.

Proof Define the vertices on the circles Cn(n = 1,2,...) as in Theorem 1.
Rotate each circle C2n(n = 1,2,...) through 8 radians in a counterclockwise
direction. Join the same vertices on Cn to those on Cn+l (n = 1,2,...) as in
Theorem 1 but use arcs of the following type:

1. Increasing in modulus,

2. Contained in the annular region determined by Cn and Cn-t-l ,

3. Except for end points, do not meet the radii through the vertices to
be connected.

The rest of the skeleton is completed in the obvious way. (The A-curves
described in (2) of Section 3 must now be constructed piecewise. For example,
the first "piece" of Ao and Al will terminate on C2 • When the vertices on C2

are joined to those on Ca , A2 and Al must also be extended to Ca and so on).
The construction offB is completed as in the proof of Theorem 1.

For a E A there exists a point ei8 E C such that l.f>(ei8) = a. The boundary
path in this skeleton which corresponds to y(ei8) in the original skeleton
(see Section 5) satisfies the requirements of the An in the conclusion of this
theorem. The end of An is the arc on C with e i8 and ei(8+8) as end points.

Remark. An analog to Theorem 2 is possible if we use Sand Arakeljan's



430 STEBBINS

theorem [1, p. 275, Theorem 2]. The result is that /6 is holomorphic in D,
conclusion 2 holds, but A C r A(f6) = r(f6)'

Two questions remain open:

1. If OC! E A, can condition 1 in Theorem 2 be improved to read

A == r(f) = rp(f)?

2. Can the upper bound on I r(j, eiB)1 in condition 3 of Theorem 1 be
lowered to 1 for all 8 or for all but a finite number of 8? Another way of
considering this second problem is to try to reduce the number of boundary
functions for / from the present countable number to a finite number. The
best possible result, of course, is to construct/so that (jJ is the only boundary
function.
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